原|2025-01-09 12:12:22|浏览:33
自然语言处理(natural language processing, NLP)是一门融语言学、计算机科学、数学于一体的科学,是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。
自然语言处理的终极任务是:像人一样理解人类的语言。这话虽然说着很容易,但是做起来比视觉要难多了。这就需要先说一下语言的特殊性。
语言的特殊性
百科上说,语言是一类复合交流系统,主要包括其形成,习得,维护和应用,特别是相应的人类能力。语言是历史的记录,是对现实世界的描述,甚至可以说,语言是很多时候我们人类本身,因为它是所有唯心主义的载体。
语言的理解也很复杂,它包含了许许多多我们认为的“常识”,这个“常识”可能需要很多语言来描述清楚,甚至需要根本就描述不来。就比如,你永远不能用语言向别人描述一只猫,除非那个人真的见过一只猫,但是在我们生活中,我们可以很方便地用“猫”这个概念。
自然语言处理的目的
自然语言处理的目的就是让计算机程序习得我们的语言以及使用语言的能力。和人一样,相比于计算机视觉,它所需要的数据和算力都是呈指数级增长的,而人也得在三到四岁才能学会简单的会话。
如今,自然语言处理几乎是算力为王的时代,领头羊并且能做出影响学界的研究的只有谷歌和facebook,前者以2017年的transformer和2018年的bert成为领头羊,后者以xlnet成为后起之秀,这中间还有一个叫huggingface的组织,致力于开源化相关的模型和代码。
至于其他的研究组,都几乎在小打小闹。甚至可以说,自然语言处理是当前深度学习的圣杯。
1、卡耐基梅隆大学
2、康奈尔大学
3、麻省理工学院
4、伊利诺伊大学厄本那-香槟分校
5、加州大学圣地亚哥分校
6、密歇根大学安娜堡分校
7、哥伦比亚大学
8、苏黎世联邦理工学院
9、佐治亚理工学院
10、斯坦福大学
11、清华大学
12、马里兰大学学院公园分校
13、华盛顿大学
14、杜克大学
15、哈佛大学
16、韩国高等科技学院
17、东北大学
18、西北大学
19、普林斯顿大学
20、特拉维夫大学
1薪酬相对较高。
2 因为随着大数据时代的到来,自然语言处理领域变得越来越重要,且市场需求量大,对人才的需求量也越来越高。
同时自然语言处理专业需要掌握的技能和知识较为复杂,是比较高端的专业。
因此,在市场上,自然语言处理硕士毕业生相对于其它专业的毕业生而言,薪酬要相对较高。
3 当然,薪酬多少还需要根据公司的规模、业务量、地域等因素综合考虑,但总体而言,的确是相对较高的。
该考业硕士就业前景非常广泛。
毕业后若国内就业,BAT首选,年薪丰厚!Fintech 中国50强企业 数库科技上海公司 招聘自然语言处理工程师:自然语言处理工程师岗位要求:语料库维护;知识图谱构建与维护。岗位要求:熟悉Python或Java开发;有自然语言处理相关经验,如分词、词性标注、实体识别、情感分析;有知识图谱构建相关经验;熟悉机器学习算法。
自然语言处理技术难点主要有语义理解、语法分析、语音识别、机器翻译等。
语义理解涉及到如何理解文本中的语义,语法分析涉及到如何识别文本中的语法结构,语音识别涉及到如何将语音转换为文本,机器翻译涉及到如何将一种语言翻译成另一种语言。这些技术都需要大量的数据和算法来支持,而且还需要解决大量的技术问题,才能达到较高的准确率。
国内一般是设在计算机专业下硕士阶段的一个方向,一般有计算语言学、人工智能原理、语音信号数字处理、知识工程等,也就是说主要掌握语言处理的计算机应用技术。 因为我马上要去德国念这个课程了,在国外的话本科阶段就有自然语言处理(或叫计算语言学)这个独立的专业,基础课程主要分数学、语言学和计算机三块,核心课程有自然语言处理的统计学方法、语言计算的算法运用、语义分析、信息抽取、语音合成、人工智能等等,前沿课程包括机器翻译、自然语言处理在生物医药中的应用、语音信号处理等,因为这本来就是交叉学科,所以还能选修许多计算机专业和语言学专业的课,有机会的话还能加入实验室搞些项目。
自然语言处理(NLP)就是在机器语言和人类语言之间沟通的桥梁,以实现人机交流的目的。
自然语言处理的具体表现形式包括机器翻译、文本摘要、文本分类、文本校对、信息抽取、语音合成、语音识别等。
简单来说,自然语言理解就是希望机器像人一样,具备正常人的语言理解能力。
应用:
1、机器翻译,2、信息检索,3、自动问答,除此之外,情感分析、自动文本摘要、社会计算和信息抽取也都有广泛的应用。
自然语言处理(NLP)的核心任务主要包括以下几项:
语言模型建模:这是NLP的基础任务之一,旨在建立一种模型来理解自然语言的结构和语法。
词向量模型:将词表征为数学向量,以便计算机能够理解词语之间的语义关系。
句法分析:对句子进行语法分析,识别句子的主语、谓语、宾语等成分。
语义理解:分析文本的意义,识别作者的观点和意图。
信息检索:从大量文本中提取与用户查询相关的信息。
机器翻译:将一种语言的文本自动翻译成另一种语言,以促进跨语言交流。
情感分析:识别文本中的情感倾向,如积极、消极或中立。
问答系统:从大量文本中自动回答用户提出的问题。
文本生成:根据特定主题或要求生成自然语言文本。
这些任务都是NLP的核心任务,它们在许多实际应用中都发挥着重要作用,如搜索引擎、聊天机器人、自动翻译工具等。
1. 小米科技
2. 百度
3. 腾讯
4. 阿里巴巴
5. 华为
6. 北京百度网讯科技
7. 北京聆听科技
1、卡耐基梅隆大学
2、康奈尔大学
3、麻省理工学院
4、伊利诺伊大学厄本那-香槟分校
5、加州大学圣地亚哥分校
6、密歇根大学安娜堡分校
7、哥伦比亚大学
8、苏黎世联邦理工学院
9、佐治亚理工学院
10、斯坦福大学
11、清华大学
12、马里兰大学学院公园分校
13、华盛顿大学
14、杜克大学
15、哈佛大学
16、韩国高等科技学院
17、东北大学
18、西北大学
19、普林斯顿大学
20、特拉维夫大学